§.9 A Critique: SQL, QUEL 263

A Critique: SQL, QUEL

SQL and QUEL are easier to use and more powerful as data sublanguages than the
ones used in DBMSs based on the network and hierarchical models. However, these
languages do not fully support some of the basic features of the relational data model:
the concept of domains, entity and referential integrity and hence the concept of
primary and foreign keys. Furthermore, these languages are redundant in the sense
that the same query may be expressed in more than one way.

Redundancy is not a sin as long as different ways of expressing the same query
yield the same results in approximately the same period of time. However, tests with
a number of implémentations of SQL, the most widely available query language for
relational DBMSs, indicate a wide variation in response time. Furthermore, some
forms of the query generate duplicate tuples whereas others do not.

Proponents of QUEL claim that it is more orthogonal and powerful than SQL.
The term orthogonal is used in programming languages to mean that concepts and
constructs are designed independently and can be used consistently in a uniform
manner. In an orthogonal language, there are no special cases and few restrictions
imposed on the use of the components of the language. The current SQL standard is
viewed as one that tried to reconcile the various commercial implementations and

.came up with one that is, in effect, the lowest common denominator. An attempt is

currently underway to upgrade the SQL standard.

The following illustrates the nonorthogonality of SQL. The first version is valid
while the second, though symmetrical, is invalid. This is so because the nested select
operand is required to be on the right-hand side of the 6 operator.

First version:

select Name

from EMPLOYEE

where Pay_Rate >
(select avg (Pay_Kate)
from EMPLOYEE)

Second version:

select Name
from EMPLOYEE
where (select avg (Pay_Rate)
from EMPLOYEE) = Pay_Rate

As mentioned earlier, the select statement of SQL represents the following re-
lational algebraic operations:

projeCtion(nplesemed by the target list) (Selec“on (represented by the where clause) (canesian product
of the relations represented by the from list))

It is not possible to change the order of these operations in SQL. Consequently, the
user has to express a query in this format, making the query less like a natural
language query.

The treatment of nested select statements in various set operators such as exists,
bany, 0all, in, and contains is also nonuniform. Whereas a nested select statement

Chapter § Relational Database Manipulation

producing a relation as the result is required in the case of exists, nested select is
only permitted if the value produced in the case of one of the operators {=, #, >,
=, <, =} is a relation of cardinality and degree one (a single value). Or. the other
hand the result of the nested select in the case of one of the set operators {@any,
Oall, in, contains} is required to be a relation of degree one and arbitrary cardinality.

Suppose we want to create a table that contains the names of employees, their
pay rate, and, for comparison, the average pay rate. This can be expressed in QUEL
as shown in Example 5.42c. However, an attempt to create such a table using the
following SQL statement, though intuitively valid, will fail because such usage is
illegal in SQL. The reason is that the select is a projection and the cardinality of
Name, Pay_Rate, is not the same as the cardinality of avg(Pay_Rate).

select Name, Pay_Rate, avg(Pay_Rate)
from EMPLOYEE

However, the following is legal and produces a table of skill and the average
pay rate for each skill:

select Skill, avg(Pay.Rate)
from EMPLOYEE
group by Skill

QUEL allows updates to involve values from two relations. As such, the pay
rates of employee in the relation EMPLOYEE can be adjusted according to the values
in a relation ADJUSTMENT shown below:

range of a is ADJUSTMENT

range of ¢ is EMPLOYEE

replace (e.Pay_Rate = a.Raise * e.Pay_Rate)
where e.Skill = a.Skill

ADJUSTMENT

Skill Raise
waiter 1.08
bartender 1.07
busboy 1.12
hostess 1.09
maitre d’ 1.08
chef 1.09

A similar attempt to use a value from another relation, as illustrated below, is
invalid in SQL:

update EMPLOYEE
set Pay_Rate = Pay_Rate *(select a.Raise
from ADJUSTMENT a
where EMPLOYEE.Skill = a.Skill)

However, in some implementations of SQL. the following statement would pro-
duce the required adjnstment in Pay_Rates. It should be obvious that for this state-

5.9 A Critique: SQL, QUEL 265

ment to work correctly, the relation ADJUSTMENT must have a tuple corresponding
to each value of Skill in EMPLOYEE.

update EMPLOYEE
set Pay_Rate = (select Pay_Rate * a.Raise
from ADJUSTMENT a

where EMPLOYEE.Skill = a.Skill)

The nonorthogonality of SQL in allowing nested query in some places and not
in others is illustrated below. Whereas the select statement on the left is legal in SQL
a similar form in the update statement on the right is not valid in all implementations
of SQL.

select Name update EMPLOYEE
from EMPLOYEE set Pay_Rate = 1.3 * Pay_Rate
where Empl_No = where Empl_No in
(select Empl_No (select Empl_No
from DUTY_ALLOCATION from DUTY_ALLOCATION
where Shift = 3) where Shift = 3)

QUEL, on the other hand, has required the use of tuple variables in its query to
date. This restriction has been modified and QUEL now allows the use of a relation
name as the tuple variable. This was implemented by a query modification introduc-
ing the relation name as a tuple variable. However, as illustrated in the following
query, using both a tuple variable and a relation name could produce an incorrect
result: '

range of e is EMPLOYEE
replace EMPLOYEE(Pay_Rate = 10.50)
where e.Empl_No = 123456

This query is modified by the introduction of a range statement:

range of ¢ is EMPLOYEE

range of EMPLOYEE is EMPLOYEE
replace EMPLOYEE(Pay_Rate = 10.50)
where e.Empl_No = 123456

The result is unexpected since the query sets the pay rate of all employees to 10.50
if there exists an employee with the number 123456.

One of the more mystifying features of QUEL is the scope rule of tuple vari-
ables in aggregation operators and aggregate functions. In aggregation operators tuple
variables are strictly local, whereas in aggregate functions the presence of the by
clause requires that the tuple variable used in that clause has a global scope. Consider
the query “‘Find the average Pay_Rate by Skill.” The QUEL version of this query
is shown in Example 5.45c. However, it may be expressed by a novice user using
an additional tuple variable as follows:

range of ¢ is EMPLOYEE
range of el is EMPLOYEE
retrieve (¢.Skill, Avg_Rate = avg(el.Pay_Rate by e.Skill))

This query shows the global scope of the tuple variable used in the by clause, which
is the same as that used outside the aggregate function. The tuple variable el is

268 Chapter 5 Relational Database Manipulation

average pay rate, the result is derived as 0.0. The result relation produced by this
query is evidently wrong. This would be not apparent to the user unless he or she
had known the contents of the MORE_EMPLOYEE relation and had computed some
sample results.

Let us modify the query as shown below. Here the by clause forces the tuple
variable in both the aggregate functions to be global.

range of ¢ is MORE_EMPLOYEE

range of el is MORE_EMPLOYEE

retrieve (e.Skill, Low_Avg_Rate =
avg(e.Pay_Rate by e.Skill where e.Pay_Rate <
avg(el.Pay_Rate by e.Skill where el.Skill = e, Skill)))

The second average is now computed using only those tuples of the join of
MORE_EMPLOYEE with itself where the skill is the same as one outside the func-
tion. This indicates the correct tuples to choose for computing the low average pay
rate. The result is shown in Figure 5.8.

We can simplify the last query as shown below. This simplified query gives the
same result as shown in Figure 5.8.

range of ¢ is MORE_EMPLOYEE

retrieve (e.Skill, Low_Avg_Rate =
avg(e.Pay_Rate by e.Skill where e.Pay_Rate <
avg(e.Pay_Rate by e.Skill)))

As illustrated above, a mixture of local and global scope of tuple variables in QUEL
tends to create confusion and retrieve incorrect data.
The SQL version of this query is relatively simple as shown below:

select ¢.Skill, avg(e.Pay_Rate)

from MORE_EMPLOYEE e

where e.Pay_Rate < (select avg(el.Pay_Rate)
from MORE_EMPLOYEE el
where el.Skill = e.Skill)

group by e.Skill

Figure 5.8 Correct values by Skill of average Pay_Rate of employees below the average for their
skills.

Skill Low Avg_Rate
bartender 8.59
bellboy 4.50
busboy 4.50
chef 14.00
hostess 4.80
maitre d’ 8.00
waiter 6.88
chef 14.00

510 QBE 269

The above discussion illustrates that neither SQL nor QUEL are perfect for
expressing all queries. A user has to know the ‘‘correct’” versions without which the
information gleaned from the DBMS may be incorrect. The user may have no way
of ascertaining the correctness of the response.

The SQL standard is under review and as with all such standards will go through
a number of versions. It is hoped that future standards will address some of the
criticisms leveled at SQL.

Query-By-Example (QBE) was originally developed by M. M. Zloof at IBM’s
Yorktown Heights Research Laboratory and has now been marketed for various re-
lational systems from IBM as part of their QMF (Query Management Facility). In
QMF, QBE is implemented not as in the system developed by Zloof, but rather by
translating the QBE queries into equivalent SQL queries. Other relational DBMSs
such as DBASE IV, INGRES, and ORACLE have some form of example or form-
based query system. ,

QBE is based on domain calculus and has a two-dimensional syntax. The quer-
ies are written in the horizontal and vertical dimensions of a table. Queries are
formed by entering an example of a possible answer in a skeleton (empty) table, as
shown in Figure 5.9. This example contains variables as in domain calculus and
specifies the conditions that have to be satisfied by the response. Conditions specified
on a single row of the table are generally considered to be conjunctive (i.c.,
“‘anded’’); conditions entered on separate rows are disjunctive (i.e., “‘ored’’). An
empty skeleton is displayed by pressing a function key.

The skeleton table does not have column headings. The first column is used for
the relation name.

To get a list of relations,. we enter P. for the PRINT command in the first
column of the column heading:

To get the attribute names for a given relation we enter the relation name fol-
lowed by a P.

DUTY_ALLOCATION P.

272 Chapter §

Relational Database Manipulation

'Example 5.56

vant

Example 5.57

name.

The fact that all details are reauired is indicated by the P. under the relation

{p.e.s.d | <p,e,s,d> € DUTY_ALLOCATION A ¢ = 123456}

DUTY_ALLOCATION Posting_No

Empl_No Shift Day

P.

123456

QBE supports the usual comparison operators: =, # (not equal), <, =, >, =;
= is normally omitted as seen in the previous example. The Boolean operators and,

or, not are also supported. Conditions specified within a single row are anded. For
multiple conditions on the same column, k, to be anded, QBE requires multiple rows
with the same example element in the kth column of each row. To specify conditions
to be ored we use different rows with different example elements.

““Get names of employees with e skill of chef earning more than $14.00
per hour.”” The above query reads “‘Get employee names where Skill =
‘chef’ and Pay_Rate > 14.00"" and is the domain calculus query:

{n | <e,n,s,p> € EMPLOYEE A s = ‘chef’ A\ p > 14.00}

This query requires two conditions to be true for the tuples that are
retrieved. It can be expressed on the skeleton table as illustrated below:

EMPLOYEE

Name

Skill

Pay_Rate

P.EX

‘chef’

>14.00

In the above example not all attribute names of the employee relation were
listed. It is possible in QBE to eliminate columns from the display if they are irrele-

to the query.

““Get names of chefs who earn more than $10 per hour but less than $20
per hour.” To specify a.conjunctive predicate of the form Pi(attr) N
Pyatr) /\ . . . Pyanr;), QBE allows multiple columns for the same attrib-
ute in the skeleton table. Hence this query can be expressed as shown below:

EMPLOYEE Empl_No

Name

Skill

Pay_Rate Pay_Rate

P.EX

chef

>10.00 <20.00

510 QBE 273

An alternate scheme with multiple rows with the same domain vari-
able to express the conjunctive predicate can also be used. The query could
be reexpressed as ‘‘Get employee names whose Skill = ’'chef’ with
Pay_Rate>10 AND (the same) employee names whose Skill is also 'chef’ with
Pay_Rate<20.’’ This is expressed in QBE by two rows with the same var-
iable in the Name column as indicated below:

EMPLOYEE Empl_No Name Skill Pay_Rate

EX chef >10.00 4o
EX chef <20.00 ,r_‘

The following example illustrates a disjunctive predicate.

Example 5.58 *“Get names of employees who are either chefs or earn more than $8 per
hour.”” In this query, the conditions to be ored are indicated by using
two rows in the skeleton table wiih different variable names for the Name
column.

EMPLOYEE Empl_No Name Skill Pay_Rate

P.EY >8.00

Data from multiple tables can be manipulated as shown in Example 5.59.

Example 5.59 ““Get shift details for the employee named Ian.”’ This query is *‘Print Postng

| No, Shift and Day (e.g., P1,S1,D1 respectively) for employee number EX
where EX is the Empl_No for employee lan. The response to the query
involves a join of relations EMPLOYEE and DUTY_ALLOCATION. In
QBE the join is implemented by utilizing the example element EX as a link
between these relations. The link in QBE is used whenever a join would be
used in relational algebra.

DUTY_ALLOCATION | Posting_No | Empl_No | Shift | Day

P P.PI EX Psl | PDI

276 Chapter §

Relational Database Manipulation
EMPLOYEE Empl_No Name Skill Pay_Rate
P.EX P.RX
P.AVG.ALL.RY

(d) “Find names of employees with Pay_Rate less than the average Pay_

Rate.”

5.10.3 categorization in QBE

PEX | PRX
AVG.ALL RY

CONDITIONS

RX < AVG.ALL.RY

The equivalent of the SQL
variable with G.

Exampie 5.62

(a) “‘Get count of employees on each shift.”’

group by operator is obtained in QBE by preceding the

DUTY_ALLOCATION

Empl_No

Shift | Day

(b) “‘Get employee numbers of all empl

addition to the date 19860419,

P.CNT.ALL.EX

oyees assigned a duty on dates in

DuTY- CATION | EmplNo Day ' CONDITIONS
EX 19860419 CNT.ALL.EX > |
P.G.EX

5.10.4 Updates

QBE includes the three update operations for inserting, modifying, and deleting.
These are indicated on the skeleton table in the relation name column by 1. (insert),
U. (modify/replace), and D. (delete). For the U. update operation based on an old
value, the user first specifies the old version and next the new version. We illustrate
the syntax for specifying these operations in the following examples.

Example 5.63 (a) “‘Insert a record into DUTY_ALLOCATION at Posting_No 321 for Empl
No 123458, Shift 2, and Day 19860421.”"

DUTY_ALLOCATION Posting_No Empl_No Shift Day

L 321 123458 2 19860421

Here the I. in the relation name column indicates the insertion opera-
tion. The values for the columns are indicated on the skeleton of the table.

(b) *‘Copy DUTY_ALLOCATION into NEW_DUTY_ALLOCATION.”

DUTY_ALLOCATION Posting_No Empl_No Shift Day

X EX sx | Dx

NEW_DUTY_ALLOCATION Posting_No Empl_No Shift Day

L PX EX X DX

Here the I. in the relation name column for the NEW_DUTY_ALLO-
CATION table indicates the insertion operation. The. similarly named vari-
ables in DUTY_ALLOCATION and NEW_DUTY_ALLOCATION indi-
cate the source of the values to be used for the insertion.

(c) “*Copy into NEW_DUTY_ALLOCATION records for Shift 1 in DUTY
-ALLOCATION.”

Chapter 5 Relational Database Manipulation

DUTY_ALLOCATION | Posting No | EmpiNo | Shifi | Day

D. EX

In the first line of the EMPLOYEE skeleton we indicate that we are
interested in the employee with the name of Ian and hence select these tu-
ples. On the second line we indicate that these tuples are to be deleted. The
use of the EX with D. in the DUTY_ALLOCATION skeleton indicates that
tuples satisfying this predicate ate to be deleted as well. W

Concluding Remarks

In this chapter we considered some of the salient features of the more popular com-
mercial data manipulation languages. We can see how they borrow heavily from
relational algebra and calculus concepts. In query design, relatively little attention
needs to be paid to evaluation. Users benefit greatly from this philosophy. In some
ways data manipulation resembles programming and, like good programming, comes
from practice. The requirement is that we be able to express exactly what we desire.

We can reflect on the complexity of what is achieved by some very simple
queries. As is normal in most database systems, suppose that every relation is sup-
ported by an underlying file of records. Let us consider the SQL query

select R.A, S.D
fromR, S
where R.B = S.C

Let the tuples of relations R and S be stored as records in the files FR and FS,

‘respectively. The above query requires that startmg with the first record of FR (tuple

of R), we compare its field, B, with field C of every record of file FS, outputting
field A value from FR and field D value from FS whenever the comparands are
equal. For n records in file FR and m in file FS, this would require some m * n

‘combinations. Even for moderate-sized relations this signifies a large number. In

Chapter 10 we consider how we can optimize this query. More immediately, how-
ever, we should reflect on how to program this task in a file environment. In this

- case, the task of translating the query into a file processing program is easy. For

more complex queries, the programming task is much more difficult. We can there-
fore appreciate the productivity improvements, among other benefits, of using a re-

lational database system.

Summary

In this chapter we examined the commercial versions of languages used for relational
database systems. These languages, unlike their theoretical counterparts, include fa-
cilities to define data as well as manipulate it.

